当前位置:首页 > 最新动态 >
影响电子束焊接质量的几个工艺因素
时间:2021-10-27 20:14:14     作者:凯正超声    

1.引言 

电子束焊接技术是高能束加工技术的一个重要组成部分,与激光焊接相比各有优点。电子束焊接除了具有输入能量密度高、加热面积小、焊接速度快、焊缝热影响区窄、工件变形小等特点之外,还具有电子束穿透深、焊缝深宽比大、电子束控制方便以及真空环境中的焊缝不受污染等特点[2]。电子束焊接适于精密焊接、穿透及深度(大厚度工件)焊接、高效率焊接和特殊焊接等。作为热加工手段之一,电子束焊接技术已经比较成熟,但又有良好的发展势头,有关机理、自动化程度、质量监控、应用领域等研究内容尚在不断进步。 

我们从二十世纪六十年代开始进行电子束焊接工艺及应用研究,涉及的材料有高熔点金属、高弹性合金、可伐合金、不锈钢、高强钢、有色金属及其合金和陶瓷等非金属材料;涉及的工件结构多种多样,以中小型精密零件为主。三十多年来已取得多项科技成果。本文试图从一些具体工件的焊接实例入手(以本单位的应用范例为主)讨论影响电子束焊接质量的几个工艺因素。 

2.焊缝结构及配合间隙 

在焊接实践中,会碰到形形色色的工件,焊缝结构也各不相同,但总体上可分为:对焊缝、端焊缝、角焊缝(包括穿透焊缝),或区分为直线焊缝、环线焊缝、曲线焊缝、点焊缝,还有等截面焊缝和变截面焊缝等。为了达到最佳焊接效果,焊缝结构和配合间隙的设计至关重要,既要考虑工件(部件)在整机中的作用,又必须满足被焊材料可焊性和具体焊接工艺的要求。所以在实施焊接之前,应该与工程设计人员共同讨论焊接件的焊缝结构,或通过工艺试验确定合理的结构与间隙尺寸。 

3.工装模具 

为了将被焊接的工件置于焊机之中,工装模具(夹具)直接影响焊接的实施效果,从一定意义上讲,模具的正确设计是焊接工作成功的一半。 

(1)夹持作用。夹具的正确运用关系到焊接的精度,一个合理的夹具既要保证工件的正确装配,又要考虑到电子束的可达性。对于易变形的工件,在夹持(或顶紧)时,压力要适中,可以用合适的弹簧起缓冲作用。 

(2)散热作用。对于易破碎或热敏的工件,夹具的散热作用不可忽视,如图1是一种光电器件,其中玻璃管壳与金属管壳、纤维屏玻璃与窗架盘均已经完成封接或粘接,最后一道封口用电子束焊接。前二道焊缝均受不得热冲击,所以在电子束焊接时要有一个合适的夹具,以帮助散热。在设计和选材时要注意:夹具与工件的配合要好,接触面要大;材料用热传导较好的材料,如纯铜。 

(3)合拢作用。有的工件属于空腔型,如空心球体,只有通过焊接手段才能够制成。电子束的焊接精度高,配以适当的合拢模具,将两个半球在焊接室内合扰后施焊,可以获得满意的结果,如用图2所示的专用模具即可。这种焊接过程,既能够获得内腔呈真空状态的目的;而且又可以保证焊接时不会发生焊缝溅射问题(如果事先在焊接室外合扰,内腔空气不易抽出,焊接时熔池会发生溅射现象)。 

4.焊接参数 

根据被焊工件的材料、尺寸及结构选取相应的工艺参数是焊接工作的主要内容。 

(1)焊接功率的影响。电子束的焊接功率指: 

P=U·I 

式中P—功率(w),U—电压(kV),I—束流(mA)它直接影响焊接的熔深,随着焊接功率的增大,焊接熔深呈线性增大,如图3所示。 

从加速电压的高低区分,高压焊机(如150kV)的电子束穿透能力更强,与低中压焊机相比,同等功率时焊接熔深会大一些;但亦有一种观点认为焊接熔深取决于电子枪的性能。 

(2)焊接线能量的影响。焊接线能量指: 

E=P/S 

式中E—线能量(J/mm),P—功率(w),S—焊速(mm/s) 

焊接线能量的输入大小对焊缝的成型起很大作用,如可以获得焊缝的最佳深宽比。另外,快速焊接时工件变形较小;慢速焊接可防止高强钢等工件产生裂纹。 

高碳钢焊接之后会产生裂纹,这是由于它的组织结构变化所致(如形成马氏体的时间长,它的膨胀力与冷却收缩不平衡)。据报导[3],钢的含碳量(C)小于0.35%是安全的,焊接时不会产生裂纹;当C量增加,为了避免出现裂纹,需要采取相应的措施,其中之一可以将焊接速度降低,以减慢冷却速率,此时容易获得良好焊缝。C量高甚者则需要预热、退火或填丝焊等其它办法。 

(3)临界焊接参数的作用。我们在进行薄件和高精度工件的焊接工艺试验时,发现它的焊接参数非常严格,偏大或偏小均会导致失败,将此参数称之谓临界焊接参数。如图4所示应变传感器焊接[4],需要将基片(厚0.15mm)与细管(φ1mm,厚0.1—0.15mm)在外侧相焊。这是一个难度较大的工艺问题,我们采用半穿透焊接,可以减小基片的变形。此时的焊接参数不能过大,不然全穿透焊接除了变形增大,还会造成细管内部MgO粉的溅射;参数过小时焊接强度太低或焊接不成。这种焊接情况,工艺参数非常临界。 

5.电子束焦斑及轰击部位 

电子束焊接的一大特点是焊缝窄、熔深大,这是由于电子焦斑可聚焦得很细,一般焦点直径在0.5—1mm左右(取决于电子束功率大小)。 

(1)常规焊接。电子束焊接工件时,一般情况下将电子束焦斑调到最佳状态,即束斑聚焦在工件表面(对于厚度较大的工件,焦点位置控制到工件内部)。电子束轰击的部位则是在工件的接触缝(焊缝)上。 

(2)束斑略偏于焊缝一侧的焊接。对于某些情况或工件,能否取得焊接的成功,电子束的轰击部位起着关键作用。如厚薄不均的工件,电子束轰击应偏于厚工件一侧;熔点各异的工件,电子束轰击则应偏于熔点较高的工件一侧。有些特殊的工件,更要视具体情况而定,例如多孔钨与钼的焊接,虽然钨的熔点较高,但为了能够获得光滑的焊缝,电子束轰击偏于钼材,使钼件局部熔融后流附到多孔钨表面和内部(表层)[5]。 

又如铌与钼焊接,电子束轰击部位与焊缝的强度密切相关,如果轰击于焊缝正中,则它的强度为66.6N/mm2,属于沿晶断裂(图5(a));如果电子束轰击偏于Nb侧约0.2mm,则焊接强度大于279.5N/mm2,呈穿晶断裂(图5(b))。 

这是由于Nb具有良好塑性和一定吸气能力,会使晶界上气体成分减少,焊缝质量较高;而钼的晶格再结晶后晶粒粗大,加之晶界杂质影响,钼熔焊后呈脆性[。

(3)电子束散焦焊接。对于某些工件的焊接,电子束略为散焦效果更佳,如网状工件的焊接,如果电子束聚焦得过细,焊接时工件易被切断。 

6.预热和退火 

对于某些材料或结构件的焊接,为了防止裂纹的产生,对被焊接的工件需要进行预热或焊后退火处理。 

(1)电子束预热和退火。利用较小功率并且散焦的电子束轰击工件,使工件具有一定的温度,以达到预热或退火的目的。具体工艺(温差)视不同的材料和工件结构而定,因为它亦涉及到材料组织的相变问题。 

(2)辅助预热和退火。利用电阻炉或石墨炉来对工件进行预热和退火。我们在进行陶瓷与金属的焊接工艺试验时,化了比较大的精力于电阻炉的试制(图6)及预热退火工艺的操作(图7)。最终达到了良好效果,取得了陶瓷与金属焊接的成功[6]。 

7.添加材料(填丝) 

通常电子束焊接不用任何焊料,但是对于某些特殊结构的工件和某些异种材料,为了取得焊接的成功,除了采用电子束轰击偏于焊缝一侧等方法之外,还可以添加第三种材料,即用填丝的方法。 

(1)钎焊。这里用的第三种材料起到钎料的作用,即此材料熔化后将两个零件粘接在一起,或使焊缝两侧表层有一些扩散作用,此时工件基材尚未熔化。如图8所示的小齿轮焊接,为了防止齿与轴的变形过大,电子束轰击仅使钎料(银铜钎料)熔化,将小齿轮与轴粘接起来,联接强度达到设计要求(扭矩强度大于118N.cm),同时变形量很小(轴的跳动量小于0.05mm)。 

(2)填丝焊接。对于可焊性较差的异种材料,为了不致出现裂纹,能够得到良好的金相组织,可以在焊缝中添加一种填充材料,以起到过渡作用,焊接时此材料与局部基材均同时熔化。焊缝的硬度、合金元素的组成和微观结构,取决于焊接参数和所用的填充材料。这种填充材料形状呈丝状或片状;自动填丝焊机则利用送丝机构进行填丝熔融焊接。填充材料的成份视被焊工件的材料而定,必须考虑到能与基材形成合适的组成(如固溶体等),例如镍基材料、银基材料、硅铝材料等。 

8.其它因素 

在实际焊接过程中,为了解决碰到的难道并获得良好的焊接性能,还有许多因素需要注意,虽然对于每一个工件而言,不一定必须面面俱到,但对于某些情况还是有作用的。 

8.1真空度的影响 

按工件所在焊接室的真空度的不同,可分为高真空、低真空(包括局部低真空)、非真空(局部保护气氛)焊接。工件的焊缝深度以及焊缝质量是有很大区别的。选用何种状态焊接,视被焊工件的材料和结构等而定。 

8.2电子束跟踪焊接 

对于曲线焊缝或偏斜焊缝,用电子束自动跟踪焊缝的焊接方法是比较合适的。它是利用电子束在焊缝的前方以极快的速度进行探测扫描,收取焊缝两侧的二次电子作为信号,来控制跟踪焊缝(电子束偏移或工作台移动)。我们在试验时,利用记忆示波器拍摄到了正常运行时的二次电子信号电压波形照片,同时获得了焊接曲线焊缝的成功(图9)。 

8.3电子束偏摆焊接 

有时可将被焊工件固定在工作台上,利用程控的偏摆电子束环绕被焊件的焊缝进行焊接,它适用于尺寸较小、厚度较薄工件的对称焊缝,如图10所示的方波导与法兰的焊接。此工作过程比较简单,适用于多工位装置的多工件焊接,对提高生产效率有一定帮助。 

8.4电子束扫描焊接 

对于厚度较大的工件,为了使焊缝熔池内的气体能够充分排出,以减少焊缝中的气孔或裂纹,利用扫描电子束是很有意义的。它实质上是一种电子束搅动焊缝熔池的作用,从而使气体排出。有时为了取得异种材料焊接成功,亦可以进行扫描焊接。电子束扫描的波形、频率和幅度等因素视具体情况而定。 

8.5脉冲焊接 

为了防止被焊工件过热和达到其它特殊目的(如提高薄件焊缝的深宽比),利用脉冲电子束焊接是很合适的。通过试验来确定束流峰值、脉冲宽度、重复频率、平均输入功率及焊接速度等参数。 

8.6修饰焊接 

有些工件的焊缝需要有较高的光洁度或有其它原因,可以采用修饰焊接的工艺过程。一般讲,修饰焊的电子束功率密度低于实际焊接的功率密率。